Synthical logo
Synthical
Your space
Profile
Activity
Favorites
Folders
Feeds
From chemRxiv

Machine Learning Prediction of Thermodynamic Stability and Electronic Properties of 2D Layered Conductive Metal-Organic Frameworks

2D layered metal-organic frameworks (MOFs) are a new class of multifunctional materials that can provide electrical conductivity on top of the conventional structural characteristics of MOFs, offering potential applications in electronics and optics. Here, for the first time, we employ Machine Learning (ML) techniques to predict the thermodynamic stability and electronic properties of layered electrically conductive (EC) MOFs, bypassing expensive ab initio calculations for the design and discovery of new materials. Proper feature engineering is a very important factor in utilizing ML models for such purposes. Here, we show that a combination of elemental features, using generic statistical reduction methods and crystal structure information curated from the recently introduced EC-MOF database, leads to a reasonable prediction of the thermodynamic and electronic properties of EC MOFs. We utilize these features in training a diverse range of ML classifiers and regressors. Evaluating the performance of these different models, we show that an ensemble learning approach in the form of stacking ML models can lead to higher accuracy and more reliability on the predictive power of ML to be employed in future MOF research.
Simplify
Published on April 2, 2024
Copy BibTeX
Loading PDF…
Loading...
Comments
Summary
There is no AI-powered summary yet, because we do not have a budget to generate summaries for all articles.
1. Buy subscription
We will thank you for helping thousands of people to save their time at the top of the generated summary.
If you buy our subscription, you will be able to summarize multiple articles.
Pay $undefined
≈10 summaries
Pay $undefined
≈60 summaries
2. Share on socials
If this article gets to top-5 in trends, we'll summarize it for free.
Copy link
Content
Summary