Synthical logo
Your space
Activity icon
Favorites icon
Account icon
From arXiv

Phase behaviour and particle-size cutoff effects in polydisperse fluids

We report a joint simulation and theoretical study of the liquid-vapor phase behaviour of a fluid in which polydispersity in the particle size couples to the strength of the interparticle interactions. Attention is focussed on the case in which the particles diameters are distributed according to a fixed Schulz form with degree of polydispersity δ=14\delta=14%. The coexistence properties of this model are studied using grand canonical ensemble Monte Carlo simulations and moment free energy calculations. We obtain the cloud and shadow curves as well as the daughter phase density distributions and fractional volumes along selected isothermal dilution lines. In contrast to the case of size-{\em independent} interaction strengths (N.B. Wilding, M. Fasolo and P. Sollich, J. Chem. Phys. {\bf 121}, 6887 (2004)), the cloud and shadow curves are found to be well separated, with the critical point lying significantly below the cloud curve maximum. For densities below the critical value, we observe that the phase behaviour is highly sensitive to the choice of upper cutoff on the particle size distribution. We elucidate the origins of this effect in terms of extremely pronounced fractionation effects and discuss the likely appearance of new phases in the limit of very large values of the cutoff.
Upvote icon
Published on April 24, 2006
Copy BibTeX
Cross iconSummary
There is no AI-powered summary yet, because we do not have a budget to generate summaries for all articles.
1. Buy subscription
We will thank you for helping thousands of people to save their time at the top of the generated summary.
If you buy our subscription, you will be able to summarize multiple articles.
Pay $8
≈10 summaries
Pay $32
≈60 summaries
2. Share on socials
If this article gets to top-5 in trends, we'll summarize it for free.
Copy link