 Synthical  Activity Favorites Account
Folders Feeds From arXiv

# On self-associated sets of points in small projective spacesself.__wrap_n=self.__wrap_n||(self.CSS&&CSS.supports("text-wrap","balance")?1:2);self.__wrap_b=(e,t,r)=>{let n=(r=r||document.querySelector([data-br="${e}"])).parentElement,a=e=>r.style.maxWidth=e+"px";r.style.maxWidth="";let s=n.clientWidth,i=n.clientHeight,l=s/2-.25,o=s+.5,u;if(s){for(a(l),l=Math.max(r.scrollWidth,l);l+1<o;)a(u=Math.round((l+o)/2)),n.clientHeight===i?o=u:l=u;a(o*t+s*(1-t))}r.__wrap_o||"undefined"!=typeof ResizeObserver&&(r.__wrap_o=new ResizeObserver(()=>{self.__wrap_b(0,+r.dataset.brr,r)})).observe(n)};self.__wrap_n!=1&&self.__wrap_b(":R12quuultfautta:",1) We study moduli of self-associated'' sets of points in ${\bf P}^n$ for small $n$. In particular, we show that for $n=5$ a general such set arises as a hyperplane section of the Lagrangean Grassmanian $LG(5,10) \subset {\bf P}^{15}$ (this was conjectured by Eisenbud-Popescu in {\it Geometry of the Gale transform}, J. Algebra 230); for $n=6$, a general such set arises as a hyperplane section of the Grassmanian $G(2,6) \subset {\bf P}^{14}$. We also make a conjecture for the next case $n=7$. Our results are analogues of Mukai's characterization of general canonically embedded curves in ${\bf P}^6$ and ${\bf P}^7$, resp. Simplify Published on April 24, 2006 Copy BibTeX Loading... Summary There is no AI-powered summary yet, because we do not have a budget to generate summaries for all articles. 1. Buy subscription We will thank you for helping thousands of people to save their time at the top of the generated summary. If you buy our subscription, you will be able to summarize multiple articles. Pay$8
≈10 summaries
Pay \$32
≈60 summaries
2. Share on socials Copy link