Synthical logo
Synthical
Your space
Profile
Activity
Favorites
Folders
Feeds
From chemRxiv
University of Ottawa

Visible light photocatalytic water remediation strategies using a novel black TiO2 based material optimized for in-flow applications

Contaminated drinking water is a major health hazard in large urban areas as well as remote communities. Several pollutants detected in untreated wastewater are hormonal disruptors which are harmful to consumers as well as aquatic life. In this contribution, we present a novel material designed for visible light driven decontamination of water. This material is based on a glass fiber support loaded with black TiO2, a modified form of TiO2 with an expanded light absorption capacity without any toxic metal or non-metal dopants. The photocatalyst developed in our laboratories is ideal for flow as the active material remians fixed while there is continous passage of solution occuring under visible light irradiation. The effectiveness of the catalyst is demonstrated with crocin and 17β-estradiol, the former being a natural carotenoid used as a screening tool, and the latter being a common hormonal disruptor. Our work shows that under visible light illumination, our supported black TiO2 is able to degrade these water contaminants with greater efficiency than conventional TiO2. Using this framework we envision that our findings can contribute to the production of inexpensive, large-scale solar or LED-based water decontamination systems which would be rapidly deployable to sites in need. Operation of such systems would require minimal training and could be monitored remotely. In addition to the catalyst’s non-toxicity and in-flow compatibility, the material also has a long shelf life and is easy and inexpensive to produce, making it an attractive candidate for developing water treatment devices
Upvote
Simplify
Published on October 25, 2023
Copy BibTeX
Loading...
Comments
Summary
There is no AI-powered summary yet, because we do not have a budget to generate summaries for all articles.
1. Buy subscription
We will thank you for helping thousands of people to save their time at the top of the generated summary.
If you buy our subscription, you will be able to summarize multiple articles.
Pay $undefined
≈10 summaries
Pay $undefined
≈60 summaries
2. Share on socials
If this article gets to top-5 in trends, we'll summarize it for free.
Copy link
Content
Summary