From arXiv

We want to investigate 'spaces' where paths have a 'weight', or 'cost', expressing length, duration, price, energy, etc. The weight function is not assumed to be invariant up to path-reversion. Thus, 'weighted algebraic topology' can be developed as an enriched version of directed algebraic topology, where illicit paths are penalised with an infinite cost, and the licit ones are measured. Its algebraic counterpart will be 'weighted algebraic structures', equipped with a sort of directed seminorm. In the fundamental weighted category of a generalised metric space, introduced here, each homotopy class of paths has a weight (or seminorm), which is subadditive with respect to composition. We also study a more general setting, spaces with weighted paths, which has finer quotients and strong links with noncommutative geometry. Weighted homology of weighted cubical sets has already been developed in a previous work, with similar results.

Simplify

Published on April 24, 2006

Copy BibTeX

Loading...

Summary

There is no AI-powered summary yet, because we do not have a budget to generate summaries for all articles.

1. Buy subscription

We will thank you for helping thousands of people to save their time at the top of the generated summary.

If you buy our subscription, you will be able to summarize multiple articles.

See an example

Pay $8

≈10 summaries

Pay $32

≈60 summaries

2. Share on socials

If this article gets to top-5 in trends, we'll summarize it for free.

Copy link