In this work we are going to consider the classical H\'enon-Devaney map given by \begin{eqnarray*} f: \mathbb{R}^2\setminus \{y=0\} &\rightarrow& \mathbb{R}^2 \\ (x,y) &\mapsto& \left(x+\dfrac{1}{y}, y-\dfrac{1}{y}-x\right) \end{eqnarray*} We are going to construct conjugacy to a subshift of finite type, providing a global understanding of the map's behavior.We extend the coding to... Show more