From arXiv

We use the classical results of Baxter and Gollinski-Ibragimov to prove a new spectral equivalence for Jacobi matrices on $l^2(\N)$. In particular, we consider the class of Jacobi matrices with conditionally summable parameter sequences and find necessary and sufficient conditions on the spectral measure such that $\sum_{k=n}^\infty b_k$ and $\sum_{k=n}^\infty (a_k^2 - 1)$ lie in $l^2_1 \cap l^1$ or $l^1_s$ for $s \geq 1$.

Simplify

Updated on July 7, 2006

Copy BibTeX

Edited 2 times

Loading...

Summary

There is no AI-powered summary yet, because we do not have a budget to generate summaries for all articles.

1. Buy subscription

We will thank you for helping thousands of people to save their time at the top of the generated summary.

If you buy our subscription, you will be able to summarize multiple articles.

See an example

Pay $8

≈10 summaries

Pay $32

≈60 summaries

2. Share on socials

If this article gets to top-5 in trends, we'll summarize it for free.

Copy link