 Synthical  Activity Favorites Account
Folders Feeds From arXiv

# Rosenthal's theorem for subspaces of noncommutative Lpself.__wrap_n=self.__wrap_n||(self.CSS&&CSS.supports("text-wrap","balance")?1:2);self.__wrap_b=(e,t,r)=>{let n=(r=r||document.querySelector(`[data-br="\${e}"]`)).parentElement,a=e=>r.style.maxWidth=e+"px";r.style.maxWidth="";let s=n.clientWidth,i=n.clientHeight,l=s/2-.25,o=s+.5,u;if(s){for(a(l),l=Math.max(r.scrollWidth,l);l+1<o;)a(u=Math.round((l+o)/2)),n.clientHeight===i?o=u:l=u;a(o*t+s*(1-t))}r.__wrap_o||"undefined"!=typeof ResizeObserver&&(r.__wrap_o=new ResizeObserver(()=>{self.__wrap_b(0,+r.dataset.brr,r)})).observe(n)};self.__wrap_n!=1&&self.__wrap_b(":R12quuultfautta:",1)

We show that a reflexive subspace of the predual of a von Neumann algebra embeds into a noncommutative Lp space for some p>1. This is a noncommutative version of Rosenthal's result for commutative Lp spaces. Similarly for 1 < q < 2, an infinite dimensional subspace X of a noncommutative Lq space either contains lq or embeds in Lp for some q < p < 2. The novelty in the noncommutative setting is a double sided change of density. Simplify
Updated on February 26, 2007
Copy BibTeX Edited 2 times  Summary
There is no AI-powered summary yet, because we do not have a budget to generate summaries for all articles. Copy link