From arXiv

We examine the formation of localized states on a generalized nonlinear impurity located at, or near the surface of a semi-infinite 2D square lattice. Using the formalism of lattice Green functions, we obtain in closed form the number of bound states as well as their energies and probability profiles, for different nonlinearity parameter values and nonlinearity exponents, at different distances from the surface. We specialize to two cases: impurity close to an "edge" and impurity close to a "corner". We find that, unlike the case of a 1D semi-infinite lattice, in 2D, the presence of the surface helps the formation of a localized state.

Simplify

Published on April 24, 2006

Copy BibTeX

Loading...

Summary

There is no AI-powered summary yet, because we do not have a budget to generate summaries for all articles.

1. Buy subscription

We will thank you for helping thousands of people to save their time at the top of the generated summary.

If you buy our subscription, you will be able to summarize multiple articles.

See an example

Pay $8

≈10 summaries

Pay $32

≈60 summaries

2. Share on socials

If this article gets to top-5 in trends, we'll summarize it for free.

Copy link