Synthical logo
Synthical
Your space
Profile
Activity
Favorites
Folders
Feeds
From chemRxiv

Exploring Iron Oxide Catalysts for Acetone Hydrodeoxygenation: Making use of Earth-Abundant Resources

The catalytic performance of γ-Fe2O3 nanopowder was investigated in the acetone hydrodeoxygenation (HDO) reaction, an essential catalytic reaction in biomass valorization. Sequential reduction/oxidation thermal pre-treatments of the γ-Fe2O3 nanopowder induced significant structural and electronic modifications that directly impacted its catalytic performance. The co-existence of Fe3+/Fe2+/Fe0 sites led to different reaction pathways (C-C coupling, hydrogenolysis, hydrogenation, and (hydro)deoxygenation) that formed a wide range of products. The correlation of the catalytic and structural data provided a better understanding of C-O, C-C, and C-H bond activation under the HDO reactional stream in the presence of metallic and oxidized phases of iron. This study demonstrates the tunability of FeOx catalysts in the acetone HDO reaction to favor different reaction pathways and the formation of products. It highlights that tailoring active sites is crucial for developing selective and optimized catalysts for the HDO reaction.
Simplify
Published on February 12, 2024
Copy BibTeX
Loading...
Comments
Summary
There is no AI-powered summary yet, because we do not have a budget to generate summaries for all articles.
1. Buy subscription
We will thank you for helping thousands of people to save their time at the top of the generated summary.
If you buy our subscription, you will be able to summarize multiple articles.
Pay $undefined
≈10 summaries
Pay $undefined
≈60 summaries
2. Share on socials
If this article gets to top-5 in trends, we'll summarize it for free.
Copy link
Content
Summary