 Synthical  Activity Favorites Account
Folders Feeds From arXiv

# Einstein and Jordan frames reconciled: a frame-invariant approach to scalar-tensor cosmologyself.__wrap_n=self.__wrap_n||(self.CSS&&CSS.supports("text-wrap","balance")?1:2);self.__wrap_b=(e,t,r)=>{let n=(r=r||document.querySelector(`[data-br="\${e}"]`)).parentElement,a=e=>r.style.maxWidth=e+"px";r.style.maxWidth="";let s=n.clientWidth,i=n.clientHeight,l=s/2-.25,o=s+.5,u;if(s){for(a(l),l=Math.max(r.scrollWidth,l);l+1<o;)a(u=Math.round((l+o)/2)),n.clientHeight===i?o=u:l=u;a(o*t+s*(1-t))}r.__wrap_o||"undefined"!=typeof ResizeObserver&&(r.__wrap_o=new ResizeObserver(()=>{self.__wrap_b(0,+r.dataset.brr,r)})).observe(n)};self.__wrap_n!=1&&self.__wrap_b(":R12quuultfautta:",1)

Scalar-Tensor theories of gravity can be formulated in different frames, most notably, the Einstein and the Jordan one. While some debate still persists in the literature on the physical status of the different frames, a frame transformation in Scalar-Tensor theories amounts to a local redefinition of the metric, and then should not affect physical results. We analyze the issue in a cosmological context. In particular, we define all the relevant observables (redshift, distances, cross-sections, ...) in terms of frame-independent quantities. Then, we give a frame-independent formulation of the Boltzmann equation, and outline its use in relevant examples such as particle freeze-out and the evolution of the CMB photon distribution function. Finally, we derive the gravitational equations for the frame-independent quantities at first order in perturbation theory. From a practical point of view, the present approach allows the simultaneous implementation of the good aspects of the two frames in a clear and straightforward way. Simplify
Updated on September 19, 2007
Copy BibTeX Edited 2 times  Summary
There is no AI-powered summary yet, because we do not have a budget to generate summaries for all articles. Copy link