From arXiv

In Einstein's general relativity, with its nonlinear field equations, the discoveries and analyzes of various specific explicit solutions made a great impact on understanding many of the unforeseen features of the theory. Some solutions found fundamental applications in astrophysics, cosmology and, more recently, in the developments inspired by string theory. In this short article we survey the invariant characterization and classification of the solutions and describe the properties and role of the most relevant classes: Minkowski, (anti-)de Sitter spacetimes, spherical Schwarzschild and Reissner-Nordstroem metrics, stationary axisymmetric solutions, radiative metrics describing plane and cylindrical waves, radiative fields of uniformly accelerated sources and Robinson-Trautman solutions. Metrics representing regions of spacetimes filled with matter are also discussed and cosmological models are very briefly mentioned. Some parts of the text are based on a detailed survey which appeared in gr-qc/0004016 (see Ref. 2).

Simplify

Published on April 24, 2006

Copy BibTeX

Loading...

Summary

There is no AI-powered summary yet, because we do not have a budget to generate summaries for all articles.

1. Buy subscription

We will thank you for helping thousands of people to save their time at the top of the generated summary.

If you buy our subscription, you will be able to summarize multiple articles.

See an example

Pay $8

≈10 summaries

Pay $32

≈60 summaries

2. Share on socials

If this article gets to top-5 in trends, we'll summarize it for free.

Copy link