Synthical logo
Synthical
Your space
Activity icon
Activity
Favorites icon
Favorites
Account icon
Account
Folders
Feeds
From arXiv

New deformations of group algebras of Coxeter groups, II

In our previous paper math.QA/0409261, we defined a deformation of the group algebra of the group of even elements of a Coxeter group W, and showed that it is flat for all values of parameters if and only if all the rank 3 parabolic subgroups of W are infinite. In this paper, we study what happens in the general case. Then the deformation is flat only for some values of parameters, and the set of all such values is called the flatness locus. The main result of the paper is an explicit description of the this flatness locus as a scheme over Z. More specifically, we show that this scheme is the intersection of the flatness loci for the subalgebras corresponding to parabolic subgroups of rank 3. The latter are determined by solving the rigid multiplicative Deligne-Simpson problem. We also define additive analogs of our algebras and study their properties.
Upvote icon
Simplify
Updated on October 31, 2006
Copy BibTeX
Edited 2 times
Loading...
Cross iconSummary
There is no AI-powered summary yet, because we do not have a budget to generate summaries for all articles.
1. Buy subscription
We will thank you for helping thousands of people to save their time at the top of the generated summary.
If you buy our subscription, you will be able to summarize multiple articles.
Pay $8
≈10 summaries
Pay $32
≈60 summaries
2. Share on socials
If this article gets to top-5 in trends, we'll summarize it for free.
Copy link
Content
Summary