Synthical logo
Your space
Activity icon
Favorites icon
Account icon
From chemRxiv
Columbia University, UC Irvine, ASTRON, Lawrence Livermore National Laboratory

Probing the Actives Sites of Oxide Encapsulated Electrocatalysts with Controllable Oxygen Evolution Selectivity

Electrocatalysts encapsulated by nanoscopic overlayers can catalyze redox reactions at the outer surface of the overlayer or at the buried interface between the overlayer and the active catalyst, leading to complex behavior in the presence of two competing electrochemical reactions. This study investigated oxide encapsulated electrocatalysts (OECs) comprised of iridium (Ir) thin films coated with an ultrathin (2-10 nm thick) silicon oxide (SiOx) or titanium oxide (TiOx) overlayer. The performance of SiOx|Ir and TiOx|Ir thin film electrodes towards the oxygen evolution reaction (OER) and Fe(II)/Fe(III) redox reactions were evaluated. An improvement in selectivity towards the OER was observed for all OECs. Overlayer properties, namely ionic and electronic conductivity, were assessed using a combination of electroanalytical methods and molecular dynamics simulations. SiOx and TiO¬x overlayers were found to be permeable to H2O and O2 such that the OER can occur at the MOx|Ir (M = Ti, Si) buried interface, which was further supported with molecular dynamics simulations. In contrast, Fe(II)/Fe(III) redox reactions occur to the same degree irrespective of whether electrocatalysts are bare, have TiOx overlayers with thicknesses less than 4 nm, or have SiOx overlayers with thicknesses less than 2 nm. This observation is attributed to facile electronic transport between the buried interface and outer surface of the overlayer, as measured with through-plane conductivity and ionic permeability measurements of wetted overlayer materials. These findings reveal the influence of oxide overlayer properties on the activity and selectivity of OECs and suggest opportunities to tune these properties for a wide range of electrochemical reactions.
Upvote icon
Published on November 17, 2023
Copy BibTeX
Cross iconSummary
There is no AI-powered summary yet, because we do not have a budget to generate summaries for all articles.
1. Buy subscription
We will thank you for helping thousands of people to save their time at the top of the generated summary.
If you buy our subscription, you will be able to summarize multiple articles.
Pay $8
≈10 summaries
Pay $32
≈60 summaries
2. Share on socials
If this article gets to top-5 in trends, we'll summarize it for free.
Copy link