Synthical logo
Synthical
Your space
Profile
Activity
Favorites
Folders
Feeds
From chemRxiv
Sorbonne University

Capturing the interactions in the BaSnF4 ionic conductor: comparison between a machine-learning potential and a polarizable force field

BaSnF4 is a prospective solid state electrolyte for fluoride ion batteries. However, the diffusion mechanism of the fluoride ions remains difficult to study, both in experiments and in simulations. In principle, ab initio molecular dynamics could allow to fill this gap, but this method remains very costly from the computational point of view. Using machine learning potentials is a promising method that can potentially address the the accuracy issues of classical empirical potentials while maintaining high efficiency. In this work, we fitted a dipole polarizable ion model and trained machine learning potential for BaSnF4 and made comprehensive comparisons on the ease of training, accuracy and efficiency. We also compared the results with the case of a simpler ionic system (NaF). We show that contrarily to the latter, for BaSnF4 the machine learning potential offers much higher versatility. The current work lays foundations for the investigation of fluoride ion mobility in BaSnF4 and provides insight on the choice of methods for atomistic simulations.
Upvote
Simplify
Published on July 26, 2023
Copy BibTeX
Loading...
Comments
Summary
There is no AI-powered summary yet, because we do not have a budget to generate summaries for all articles.
1. Buy subscription
We will thank you for helping thousands of people to save their time at the top of the generated summary.
If you buy our subscription, you will be able to summarize multiple articles.
Pay $undefined
≈10 summaries
Pay $undefined
≈60 summaries
2. Share on socials
If this article gets to top-5 in trends, we'll summarize it for free.
Copy link
Content
Summary