 Synthical  Activity Favorites Account
Folders Feeds From arXiv

# Intersections numbers on the compact variety of rational ruled surfacesself.__wrap_n=self.__wrap_n||(self.CSS&&CSS.supports("text-wrap","balance")?1:2);self.__wrap_b=(e,t,r)=>{let n=(r=r||document.querySelector(`[data-br="\${e}"]`)).parentElement,a=e=>r.style.maxWidth=e+"px";r.style.maxWidth="";let s=n.clientWidth,i=n.clientHeight,l=s/2-.25,o=s+.5,u;if(s){for(a(l),l=Math.max(r.scrollWidth,l);l+1<o;)a(u=Math.round((l+o)/2)),n.clientHeight===i?o=u:l=u;a(o*t+s*(1-t))}r.__wrap_o||"undefined"!=typeof ResizeObserver&&(r.__wrap_o=new ResizeObserver(()=>{self.__wrap_b(0,+r.dataset.brr,r)})).observe(n)};self.__wrap_n!=1&&self.__wrap_b(":R12quuultfautta:",1)

We consider the Quot scheme, R_{d}, compactifying the space of degree d maps from the projective line to the Grassmannian of lines. We give an algorithm for computing the degree of R_{d} under a "generalized Pl\"ucker embedding", this is a certain Gromov-Witten invariant. The approach is to apply the Atiyah-Bott localization formula for the natural C^{*}-action on R_{d}. These numbers can be obtained directly from Vafa-Intriligator formula. Simplify
Updated on June 2, 2008
Copy BibTeX Edited 2 times  Summary
There is no AI-powered summary yet, because we do not have a budget to generate summaries for all articles. Copy link