From arXiv

First, we provide another proof that the signed count of the real $J$-holomorphic spheres (or $J$-holomorphic discs) passing through a generic real configuration of $k$ points is independent of the choice of the real configuration and the choice of $J$, if the dimension of the Lagrangian submanifold $L$ (fixed points set of the involution) is two or three, and also if we assume $L$ is orientable and relatively spin, and $M$ is strongly semi-positive. This theorem was first proved by Welschinger in a more general setting, and we provide more natural approach using the degree of evaluation maps from the moduli spaces of $J$-holomorphic discs. Then, we define the invariant count of discs intersecting cycles of a symplectic manifold at fixed interior marked points, and intersecting real points at the boundary under certain assumptions. The last result is new and was not proved by Welshinger's method.

Simplify

Updated on April 25, 2006

Copy BibTeX

Edited 2 times

Loading...

Summary

There is no AI-powered summary yet, because we do not have a budget to generate summaries for all articles.

1. Buy subscription

We will thank you for helping thousands of people to save their time at the top of the generated summary.

If you buy our subscription, you will be able to summarize multiple articles.

See an example

Pay $8

≈10 summaries

Pay $32

≈60 summaries

2. Share on socials

If this article gets to top-5 in trends, we'll summarize it for free.

Copy link