Synthical logo
Your space
From arXiv

Pose-Guided Graph Convolutional Networks for Skeleton-Based Action Recognition

Graph convolutional networks (GCNs), which can model the human body skeletons as spatial and temporal graphs, have shown remarkable potential in skeleton-based action recognition. However, in the existing GCN-based methods, graph-structured representation of the human skeleton makes it difficult to be fused with other modalities, especially in the early stages. This may limit their scalability and performance in action recognition tasks. In addition, the pose information, which naturally contains informative and discriminative clues for action recognition, is rarely explored together with skeleton data in existing methods. In this work, we propose pose-guided GCN (PG-GCN), a multi-modal framework for high-performance human action recognition. In particular, a multi-stream network is constructed to simultaneously explore the robust features from both the pose and skeleton data, while a dynamic attention module is designed for early-stage feature fusion. The core idea of this module is to utilize a trainable graph to aggregate features from the skeleton stream with that of the pose stream, which leads to a network with more robust feature representation ability. Extensive experiments show that the proposed PG-GCN can achieve state-of-the-art performance on the NTU RGB+D 60 and NTU RGB+D 120 datasets.
Published on October 10, 2022
Copy BibTeX
There is no AI-powered summary yet, because we do not have a budget to generate summaries for all articles.
1. Buy subscription
We will thank you for helping thousands of people to save their time at the top of the generated summary.
If you buy our subscription, you will be able to summarize multiple articles.
Pay $undefined
≈10 summaries
Pay $undefined
≈60 summaries
2. Share on socials
If this article gets to top-5 in trends, we'll summarize it for free.
Copy link