Synthical
Activity
Favorites
Account
Folders
Feeds
From arXiv

# Gravitational Field of Fractal Distribution of Particlesself.__wrap_n=self.__wrap_n||(self.CSS&&CSS.supports("text-wrap","balance")?1:2);self.__wrap_b=(e,t,r)=>{let n=(r=r||document.querySelector(`[data-br="\${e}"]`)).parentElement,a=e=>r.style.maxWidth=e+"px";r.style.maxWidth="";let s=n.clientWidth,i=n.clientHeight,l=s/2-.25,o=s+.5,u;if(s){for(a(l),l=Math.max(r.scrollWidth,l);l+1<o;)a(u=Math.round((l+o)/2)),n.clientHeight===i?o=u:l=u;a(o*t+s*(1-t))}r.__wrap_o||"undefined"!=typeof ResizeObserver&&(r.__wrap_o=new ResizeObserver(()=>{self.__wrap_b(0,+r.dataset.brr,r)})).observe(n)};self.__wrap_n!=1&&self.__wrap_b(":R12quuultfautta:",1)

In this paper we consider the gravitational field of fractal distribution of particles. To describe fractal distribution, we use the fractional integrals. The fractional integrals are considered as approximations of integrals on fractals. Using the fractional generalization of the Gauss's law, we consider the simple examples of the fields of homogeneous fractal distribution. The examples of gravitational moments for fractal distribution are considered.
Simplify
Published on April 24, 2006
Copy BibTeX
Summary
There is no AI-powered summary yet, because we do not have a budget to generate summaries for all articles.