Synthical logo
Your space
Activity icon
Favorites icon
Account icon
From arXiv

Communication models with distributed transmission rates and buffer sizes

The paper is concerned with the interplay between network structure and traffic dynamics in a communications network, from the viewpoint of end-to-end performance of packet transfer. We use a model of network generation that allows the transition from random to scale-free networks. Specifically, we are able to consider three different topologycal types of networks: (a) random; (b) scale-free with \gamma=3; (c) scale free with \gamma=2. We also use an LRD traffic generator in order to reproduce the fractal behavior that is observed in real world data communication. The issue is addressed of how the traffic behavior on the network is influenced by the variable factors of the transmission rates and queue length restrictions at the network vertices. We show that these factors can induce drastic changes in the throughput and delivery time of network performance and are able to counter-balance some undesirable effects due to the topology.
Upvote icon
Updated on April 25, 2006
Copy BibTeX
Edited 2 times
Cross iconSummary
There is no AI-powered summary yet, because we do not have a budget to generate summaries for all articles.
1. Buy subscription
We will thank you for helping thousands of people to save their time at the top of the generated summary.
If you buy our subscription, you will be able to summarize multiple articles.
Pay $8
≈10 summaries
Pay $32
≈60 summaries
2. Share on socials
If this article gets to top-5 in trends, we'll summarize it for free.
Copy link