From arXiv

We study metastability and nucleation in a kinetic two-dimensional Ising model which is driven out of equilibrium by a small random perturbation of the usual dynamics at temperature T. We show that, at a mesoscopic/cluster level, a nonequilibrium potential describes in a simple way metastable states and their decay. We thus predict noise-enhanced stability of the metastable phase and resonant propagation of domain walls at low T. This follows from the nonlinear interplay between thermal and nonequilibrium fluctuations, which induces reentrant behavior of the surface tension as a function of T. Our results, which are confirmed by Monte Carlo simulations, can be also understood in terms of a Langevin equation with competing additive and multiplicative noises.

Simplify

Updated on November 7, 2006

Copy BibTeX

Edited 2 times

Loading...

Summary

There is no AI-powered summary yet, because we do not have a budget to generate summaries for all articles.

1. Buy subscription

We will thank you for helping thousands of people to save their time at the top of the generated summary.

If you buy our subscription, you will be able to summarize multiple articles.

See an example

Pay $8

≈10 summaries

Pay $32

≈60 summaries

2. Share on socials

If this article gets to top-5 in trends, we'll summarize it for free.

Copy link