Synthical logo
Your space
Activity icon
Favorites icon
Account icon
From arXiv

Condensation temperature of interacting Bose gases with and without disorder

The momentum-shell renormalization group (RG) is used to study the condensation of interacting Bose gases without and with disorder. First of all, for the homogeneous disorder-free Bose gas the interaction-induced shifts in the critical temperature and chemical potential are determined up to second order in the scattering length. The approach does not make use of dimensional reduction and is thus independent of previous derivations. Secondly, the RG is used together with the replica method to study the interacting Bose gas with delta-correlated disorder. The flow equations are derived and found to reduce, in the high-temperature limit, to the RG equations of the classical Landau-Ginzburg model with random-exchange defects. The random fixed point is used to calculate the condensation temperature under the combined influence of particle interactions and disorder.
Upvote icon
Published on April 24, 2006
Copy BibTeX
Cross iconSummary
There is no AI-powered summary yet, because we do not have a budget to generate summaries for all articles.
1. Buy subscription
We will thank you for helping thousands of people to save their time at the top of the generated summary.
If you buy our subscription, you will be able to summarize multiple articles.
Pay $8
≈10 summaries
Pay $32
≈60 summaries
2. Share on socials
If this article gets to top-5 in trends, we'll summarize it for free.
Copy link