Synthical logo
Synthical
Your space
Profile
Activity
Favorites
Folders
Feeds

Improved hydrophobic subtraction model of reversed-phase liquid chromatography selectivity based on a large dataset with a focus on isomer selectivity

Reversed-phase (RP) liquid chromatography is an important tool for the characterization of materials and products in the pharmaceutical industry. Method development is still challenging in this application space, particularly when dealing with closely-related compounds. Models of chromatographic selectivity are useful for predicting which columns out of the hundreds that are available are likely to have very similar, or different, selectivity for the application at hand. The hydrophobic subtraction model (HSM1) has been widely employed for this purpose; the column database for this model currently stands at 750 columns. In previous work we explored a refinement of the original HSM1 (HSM2) and found that increasing the size of the dataset used to train the model dramatically reduced the number of gross errors in predictions of selectivity made using the model. In this paper we describe further work in this direction (HSM3), this time based on a much larger dataset (43,329 total measurements) containing selectivities for compounds covering a broader range of physicochemical properties compared to HSM1. This includes multiple compounds that are actual active pharmaceutical ingredients and related synthetic intermediates and impurities, as well as multiple pairs of closely related structures (e.g., geometric and cis-/trans- isomers). The HSM3 model is based on retention measurements for 75 compounds using 13 RP stationary phases and a mobile phase of 40/60 acetonitrile/25 mM ammonium formate buffer at pH 3.2. This data-driven model produced predictions of ln(alpha) (chromatographic selectivity using ethylbenzene as the reference compound) with average absolute errors of approximately 0.033, which corresponds to errors in alpha of about 3 %. In some cases, the prediction of the trans-/cis- selectivities for positional and geometric isomers was relatively accurate, and the driving forces for the observed selectivity could be inferred by examination of the relative magnitudes of the terms in the HSM3 model. For some geometric isomer pairs the interactions mainly responsible for the observed selectivities could not be rationalized due to large uncertainties for particular terms in the model. This suggests that more work is needed in the future to explore other HSM-type models and continue expanding the training dataset in order to continue improving the predictive accuracy of these models.
Simplify
Published on April 2, 2024
Copy BibTeX
Loading PDF…
Loading...
Comments
Summary
There is no AI-powered summary yet, because we do not have a budget to generate summaries for all articles.
1. Buy subscription
We will thank you for helping thousands of people to save their time at the top of the generated summary.
If you buy our subscription, you will be able to summarize multiple articles.
Pay $undefined
≈10 summaries
Pay $undefined
≈60 summaries
2. Share on socials
If this article gets to top-5 in trends, we'll summarize it for free.
Copy link
Content
Summary